terça-feira, 30 de novembro de 2010

Como a acne e as espinhas são formadas?

Como a acne e as espinhas são formadas?


Assim como a acne, a espinha é um problema muito comum entre os adolescentes e jovens. Mas o que acne? Como se forma a espinha? E por que é tão comum entre adolescentes e jovens?
Para se entender como se dá à formação da acne e da espinha, necessário se faz, lembrarmos da constituição da nossa pele. Ela se divide em camadas, a epiderme e a derme. A derme possui pequenos “alvéolos” denominadas de glândulas, são as glândulas sebáceas. Estas produzem uma secreção que é uma mistura complexa de lipídios, e é controlada por hormônios sexuais. Na puberdade a secreção sebácea é aumentada, devido à acelerada produção desses hormônios. Por isso este problema é mais característico nos adolescentes.
Quando ocorre uma produção excessiva dessa secreção, há uma obstrução nos “canais” dessas glândulas, ocasionando dessa forma a acne, que pode ser esbranquiçada ou enegrecido. Este local fica propício à proliferação de bactérias oportunistas que acabam infeccionando a região formando o que conhecemos como espinhas.

METABOLISMO DE LIPÍDIOS


Os triagliceróis são os lipídios mais abundantes da dieta e constituem a forma de armazenamento de todo o excesso de nutrientes, quer este excesso seja ingerido sob a forma de carboidratos, proteínas ou dos próprios lipídios. Representam, portanto, a principal reserva energética do organismo, perfazendo, em média, 20% do peso corpóreo, o que equivale a uma massa 100 vezes maior do que a do glicogênio hepático. Os triagliceróis são armazenados nas células adiposas, sob forma anidra, e podem ocupar a maior parte do volume celular.

DEGRADAÇÃO DE TRIAGLICERÓIS E ÁCIDOS GRAXOS
A mobilização do depósito de triagliceróis é obtida por ação de lipases, presentes nos adipócitos, que hidrolisam os triacilgliceróis a ácidos graxos e glicerol, oxidados por vias diferentes.

O glicerol não pode ser reaproveitado pelos adipócitos, que não têm glicerol quinase, sendo então liberado no sangue. No fígado, por ação da glicerol quinase, é convertido a glicerol 3-fosfato e transformado em diidroxiacetona fosfato, um intermediário da glicose ou da gliconeogênese.

O gliceros não pode ser reaproveitado pelos adipócitos, que não têm glicerol quinase, sendo então liberado no sangue. No fígado, por ação da glicerol quinase, é convertido a glicerol 3-fosfato e transformado em diidroxiacetona fosfato, um intermediário da glicólise ou da glicogênese.

Os ácidos graxos liberados pelos adipócitos são transportados pelo sangue ligados à albumina e utilizados, principalmente pelo fígado e músculos, como fonte de energia. Sua degradação, como se verá a seguir, é feita por uma via especial, que se processa no interior das mitocôndrias.
Para sua oxidação, os ácidos graxos são ativados e transportados para a matriz mitocondrial
Em uma etapa que precede sua oxidação, as ácidos graxos são ativados por conversão a acil-CoA, por ação de acil-CoA sintetases, presentes na membrana externa da mitocôndria.

Nesta reação, forma-se uma ligação tioéster entre o grupo carboxila do ácido graxo e o grupo SH da coenzima. A, produzindo uma acil-CoA. As acil-CoA, como a acetil-CoA, são compostos ricos em energia: a energia derivada da clivagem do ATP em adenosina monofosfato (AMP) e pirofosfato inorgânico (PPi), com a quebra de uma ligação anidrido fosfórico, é utilizada para formar a ligação tioéster. O pirofosfato é hidrolisado a 2 Pi, numa reação irreversível, o que torna o processo de ativação do ácido graxo a acil-CoA também irreversível.

A membrana interna da mitocôndria é impermeável a coenzima A e a acil-CoA. Para a introdução dos radicais acila na matriz mitocondrial, é utilizado um sistema específico de transporte na face externa da membrana interna, a carnitina-acil transferase I transfere o radical acila para a carnitina, e, na face interna, a carnitina-acil transferase II doa o grupo acila da acil-carnitina para uma coenzima. A da matriz mitocondrial, liberando a carnitina.
A acil-CoA é oxidada a acetil-CoA, produzindo NADH e FADH2
A acil-CoA presente na matriz mitocondrial é oxidada por uma via denominada b-oxidação no ciclo de Lynen. Esta via consta de uma série cíclica de quatro reações, ao final das quais a acil-CoA é encurtada de dois carbonos, que são liberados sob a forma de acetil-CoA. As quatro reações são:

oxidação da acil-CoA a uma enoil-CoA (acil-CoA b-instaurada) de configuração trans com formação de FADH2;

hidratação da dupla ligação, formando o isômero L da 3-hidroxiacil-CoA;

oxidação do grupo hidroxila a carbonila, com formação de b-cetoacil-CoA e NADH;

quebra da b-cetoacil-CoA por uma molécula de CoA, com formação de acetil-CoA e uma acil-CoA com dois carbonos a menos; esta acil-CoA refaz o ciclo várias vezes, até ser totalmente convertida a acetil-CoA.

A oxidação do ácido palmítico produz 129 ATP

A oxidação completa de um ácido graxo exige a cooperação entre o ciclo de Lynen, que converte o ácido graxo a acetil-CoA, e o ciclo de Krebs, que oxida o radical acetil a CO2.

Em cada volta do ciclo de Lynen, há produção de 1 FADH2, 1 NADH, 1 acetil-CoA e 1 acil-CoA com dois átomos de carbono a menos que o ácido graxo original.

Sempre que o número de átomos de carbono do ácido graxo for par, a última volta do ciclo de oxidação inicia-se com uma acil-CoA de quatro carbonos, a butiril-CoA, e, neste caso, são produzidas 2 acetil-CoA, além de FADH2 e NADH.

O número de voltas percorridas por um ácido graxo até sua conversão total a acetil-CoA dependerá, naturalmente, do seu número de átomos de carbono. Assim sendo, para a oxidação completa de uma molécula de ácido palmítico, que tem 16 átomos de carbono, são necessárias sete voltas no ciclo, com a produção de 8 acetil-CoA. A oxidação de cada acetil-CoA no ciclo de Krebs origina 3 NADH, 1 FADH2 e 1 GTP. Pela fosforilação oxidativa completa do formam, respectivamente, 3 e 2 ATP. A produção de ATP formado (131) deve ser descontado o gasto inicial na reação de ativação do ácido graxo, onde há conversão de ATP e AMP + 2Pi e, portanto, consumo de duas ligações ricas em energia, o que equivaleria a um gasto de 2 ATP. O rendimento final da oxidação do ácido palmítico será, então, 129 ATP.
A b-oxidação dos ácidos graxos com número ímpar de átomos de carbono produz Propionil-CoA, que é convertida a succinil-CoA
Os ácidos graxos com número ímpar de átomos de carbono constituem uma pequena fração dos ácidos graxos da dieta e são também oxidados pela via da b-oxidação. Neste caso, entretanto a última volta do ciclo de Lynen inicia-se com uma acil-CoA de cinco carbonos e produz uma molécula de acetil-CoA e uma de propionil-CoA, ao invés de duas de acetil-CoA. Para sua oxidação, a propionil-CoA é convertida a succinil-CoA, análoga à carboxilação de piruvato a oxaloacetato e que também requer botina como coenzima. A conversão de D-metilmalonil-CoA a succinil-CoA é feita em duas etapas: transformação do isômero D em L e isomerização deste último composto utilizando 5+-adenosil-cobalamina, um derivado da vitamina B12, como coenzima.


A oxidação de ácidos insaturados também requer enzimas adicionais
Os ácidos graxos insaturados são muito comuns em tecidos animais e vegetais, e suas duplas reações apresentam quase sempre a configuração cis. Para sua oxidação, além das enzimas da oxidação, são necessárias duas enzimas adicionais: uma epimerase é uma isomerase.


Após a remoção de algumas unidades de dois carbonos (acetil-CoA) pelo ciclo de Lynen, o ácido graxo insaturado originará uma D -enoil-CoA ou uma D -enoil-CoA, segundo a posição original da dupla ligação no ácido graxo.

A cis-D -enoil-CoA é substrato para a enoil-CoA hidratase, mas o produto formado é o D-3-hidroxiacil-CoA, ao invés do isômero L, formado na oxidação de ácidos graxos saturados. A etapa seguinte é catalisada pela 3-hidroxiacil-CoA, que só reconhece isômeros L.

Portanto o isômero D deve ser convertido em L por ação de uma epimerase, para seguir as reações subseqüentes da b-oxidação.
O fitol, componente da clorofila, é oxidado por alfa e beta-oxidação
A clorofila é um componente quantitativamente importante da alimentação de muitos animais. Um dos substituíntes do núcleo pirrólico da clorofila é o fitol, um álcool com uma longa cadeia alifática, que pode ser oxidado a ácido fitânico, um componente minoritário de gorduras, leite e derivados. O ácido fitânico, por conter um radical metil no carbono b, não é reconhecido pela acil-CoA desidrogenase, que catalisa a primeira reação da b-oxidação. Esta situação é contornada pela hidroxilação do carbono a do ácido fitânico (a-oxidação), seguida por descarboxilação. O ácido pristânico produzido tem o radical metil agora no carbono a e apresenta o carbono b não-substanciado, podendo ser ativado e oxidado pelo ciclo de Lynen. Devido à presença dos radicais metil, a oxidação da pristanoil-CoA produz, alternadamente, propionil-CoA.

A deficiência hereditária de enzima que promove a a-oxidação resulta em acúmulo de ácido pristânico no sangue e nos tecidos, com lesão do sistema nervoso central (moléstia de Refsum)

No fígado, a acetil-CoA pode ser convertida a corpos cetônicos, oxidados por tecidos extra-hepáticos


No fígado, uma pequena quantidade de acetil-CoA é normalmente transformada em acetoacetato b-hidroxibutirato. Estes dois metabólitos e a acetona, formada espontaneamente pela descarboxilação do acetoacetato, são chamados em conjunto de corpos cetônicos, e sua síntese, de cetogênese. Esta ocorre na matriz mitocondrial, através da condensação de três moléculas de acetil-CoA em duas etapas. Na primeira, catalisada pela tiolase, duas moléculas de acetil-CoA originam acetoacetil-CoA. Esta reação, quando transcorre no sentido oposto, constitui a última reação da última volta do ciclo de Lynen. A reação de acetoacetil-CoA com uma terceira molécula de acetil-CoA forma 3-hidroxi-3-metilglutaril-CoA (HMG-CoA). Sua clivagem origina acetoacetato e acetil-CoA. O acetoacetato produz b-hidroxibutirato e acetona.

Os corpos cetônicos são liberados na corrente sangüínea, e o acetoacetato e o b-hidroxibutirato são aproveitados, principalmente pelo coração e músculos, como fonte de energia. Estes órgãos são capazes de utilizar os dois compostos por possuírem uma enzima, a b-cetoacil-CoA transferase, ausente do fígado. Esta enzima catalisa a transferência de CoA de succinil-CoA para acetoacetato, formando acetoacetil-CoA é um intermediário do ciclo de Lynen e, por ação da tiolase, é cindida em duas moléculas de acetil-CoA, que podem ser oxidadas pelo ciclo de Krebs. O aproveitamento do b-hidroxibutirato é feito por sua prévia transformação em acetoacetato, através da ação da b-hidroxibutirato desidrogenase.

A produção de corpos cetônicos é, portanto, um processo que permite a transferência de carbonos oxidáveis do fígado para outros órgãos. Esta produção é anormalmente alta quando a degradação de triagliceróis aumenta muito sem ser acompanhada por degradação proporcional de carboidratos. É o que ocorre quando há redução drástica da ingestão de carboidratos (jejum ou dieta) ou distúrbio de seu metabolismo (diabetes). Como a produção ultrapassa o aproveitamento pelos tecidos extra-hepáticos (cetose), os corpos cetônicos aparecem no plasma em concentração elevada (cetonemia), levando a uma acidose, isto é, uma diminuição do pH sangüíneo. Em casos de cetose acentuada, o cérebro pode obter parte da energia que necessita por oxidação dos corpos cetônicos.
O etanol é oxidado a acetil-CoA
O etanol ingerido pelo homem é prontamente absorvido e, no fígado, é oxidado a acetaldeído pela álcool desidrogenase citoplasmática, em uma reação idêntica à última etapa da fermentação alcoólica por leveduras:


O equilíbrio da reação favorece a formação de etanol, mas sua oxidação prossegue graças a conversão de acetaldeído em acetato, catalisada pela acetaldeído desidrogenase mitocondrial:


O acetato, à semelhança dos ácidos graxos, origina acetil-CoA por ação da acil-CoA sintetase. Neste ponto, o metabolismo do etanol confunde-se com o metabolismo de carboidratos, lipídios e proteínas, que também originam acetil-CoA. Deste modo, o consumo de quantidade discretas de etanol significa consumo adicional de calorias, que devem ser adicionadas às calorias derivadas na ingestão de nutrientes no cômputo das calorias totais da dieta. Todavia, a ingestão de grandes quantidades de etanol e, principalmente, o alcoolismo crônico têm conseqüências muito danosas para o organismo.

Alguns efeitos metabólicos do álcool no fígado são resultado da produção de níveis altos de NADH no citossol, onde normalmente a concentração de NAD+ é muito maior do que a de NADH. A alta concentração de NADH resultante da oxidação do etanol desloca a reação catalisada pela lactato desidrogenase no sentido da formação de lactato, cuja concentração pode aumentar de até cinco vezes, levando, portanto, a uma acidose. A baixa concentração de piruvato resultante impossibilita a gliconcogênese. Como, muitas vezes, a ingestão de álcool não é acompanhada de ingestão de nutrientes, pode ocorrer hipoglicemia e, finalmente, coma. A produção de acetil-CoA associada à baixa disponibilidade de glicose ocasiona cetose. Muitos efeitos metabólicos ao etanol ainda são compreendidos, especialmente aqueles que induzem a dependência.


SÍNTESE DE ÁCIDOS GRAXOS E TRIACILGLICERÓIS


Os ácidos graxos, constituíntes dos triacilgliceróis, podem diretamente da dieta ou serem sintetizados a partir de carboidratos, principalmente, e de proteínas. Neste último caso, os carboidratos e os aminoácidos são degradados até acetil-CoA e oxaloacetato. A síntese de ácidos graxos ocorre no citossol, para onde deve ser transportada a acetil-CoA formada em mitocôndria. Da condensação de acetil-CoA e oxaloacetato, forma-se citrato. Se a carga energética celular for alta (alta concentração de ATP), o citrato não pode ser oxidado pelo ciclo de Krebs em virtude da ambição da isocitrato desidrogenase e é transportado para a citossol, onde é cindido em oxaloacetato e acetil-CoA, à custa de ATP, numa reação catalisada pela citrato liase:
O oxaloacetato é reduzido a malato pela desidrogenase málica do citossol. O malato é substrato da enzima málica: nesta reação são produzidos piruvato, que retorna a mitocôndria, e NADPH.
A síntese de ácidos graxos tem malonil-CoA como doador de carbonos e NADPH como agente redutor
A síntese de ácidos graxos consiste na união seqüencial de unidades de dois carbonos: a primeira unidade é proveniente de acetil-CoA, e todas as subseqüentes, de malonil-CoA, formada por carboxilação de acetil-CoA. Esta reação é catalisada pela acetil-CoA, formada por carboxilação de acetil-CoA. Esta reação é catalisada pela acetil-CoA carboxilase, que tem como grupo prostético a biotina.
A síntese de ácidos graxos em bactérias e mamíferos processa-se através das mesmas reações catalisadas, todavia, por sistemas enzimáticos diferentes. A seguir será descrita a síntese em bactérias e, posteriormente, assinaladas as diferenças entre este sistema e o que ocorre em mamíferos.

Nas bactérias, as enzimas da síntese de ácidos graxos estão agrupadas em um complexo enzimático chamado sintase de ácidos graxos. Também faz parte deste complexo uma pequena proteína não enzimática, designada proteína carregadora de acila, ou ACP (“acyl-carrier protein”), à qual está sempre ligada a cadeia do ácido graxo em crescimento. O ACP tem como grupo prostético um derivado do ácido pantotênico: a fosfopanteteína, também componente da coenzima A.

A síntese inicia-se com a transferência do radical acetil da CoA para o ACP, catalisada pela primeira enzima do complexo: a acetil-CoA-ACP transacilase; este radical é, a seguir, transferido para o grupo SH de um resíduo de cisteína da Segunda enzima do complexo: a b-cetoacil-ACP sintase. O ACP, agora livre, pode receber o radical malonil da malonil-CoA, formado malonil-ACP. Segue-se uma condensação dos grupos acetil e malonil, catalisada pela b-cetoacil-ACP sintase (enzima de condensação), com liberação de CO2. Este CO2 é exatamente aquele usado para carboxilar a acetil-CoA a malonil-CoA. Por isso, apesar de CO2 ser imprescindível à síntese de ácidos graxos, seu átomo de carbono não aparece no produto. O fato de a condensação processar-se com uma descarboxilação faz com que esta reação seja acompanhada de uma grande queda de energia livre, dirigindo a reação no sentido da síntese. Justifica-se assim o gasto inicial de ATP para produzir malonil-CoA a partir de acetil-CoA: a utilização do percursor de três carbonos contorna a inviabilidade termodinâmica da condensação de duas moléculas de dois carbonos.

A b-cetoacil-ACP de quatro carbonos formada sofre uma redução, uma desidratação e nova redução. As reduções são catalisadas por redutases que usam NADPH como doador de elétrons. Neste ponto termina o primeiro ciclo de síntese, com a formação de um butiril-ACP. Deve-se notar que a seqüência das reações de síntese (condensação, redução, desidratação e redução) é inversa à seqüência das reações de oxidação de um ácido graxo pelo ciclo de Lynen (oxidação, hidratação, oxidação, quebra da cadeia carbônica). Os processos diferem, entretanto, quanto às enzimas e coenzimas que utilizam, o compartimento celular onde se processam e o suporte da cadeia carbônica (CoA ou ACP).

Para prosseguir o alongamento da cadeia, o radical butiril é transferido para o grupo SH da b- cetoacil-ACP sintase ( à semelhança do que ocorreu com o radical acetil), liberando o ACP, que recebe outro radical malonil. A repetição do ciclo leva à formação do hexanoil-ACP e, após mais cinco voltas, de palmitoil-ACP, que hidrolisado, libera o ácido palmítico.

Nos animais, a sintase de ácidos graxos é composta por apenas duas cadeias polipeptídicas idênticas, formando, portanto, um dímero do tipo a 2. A cada cadeia encontra-se associado um ACP. O que torna notável esta organização é o fato de estas cadeias polipeptídicas constituírem enzimas multifuncionais. Este termo é aplicado para designar cadeias polipeptídicas que apresentam várias atividades catalíticas, cada uma das quais associada a uma certa região da cadeia. Este é exatamente o caso da sintase de ácidos graxos dos animais, que apresentam, em cada cadeia peptídica, as atividades correspondentes às seguintes enzimas bacterianas: acetil-CoA-ACP transacilase, malonil-CoA-ACP transacilase, b-cetoacil-ACP redutase, b-cetoacil-ACP desidratase, enoil-ACP redutase e tioesterase. Esta última atividade é a responsável pela hidrólise final de palmitoil-ACP, liberando ácido palmítico. Uma comparação entre s atividades enzimáticas de cada monômero do complexo e as enzimas necessárias para a síntese de ácidos graxos em bactérias revela a ausência de atividade equivalente à da enzima de condensação (b-cetoacil-ACP sintase) no monômero. De fato, esta atividade só aparece no dímero funcional, pois depende de interações das duas cadeias peptídicas. A presença de enzimas multifuncionais associadas em um dímero traz, naturalmente, grande eficiência e economia ao processo de síntese, permitindo também a síntese simultânea de duas moléculas de palmitato, uma em cada monômero.

No total, a síntese de ácido palmítico (16 C) requer 1 acetil-CoA, 1 malonil-CoA, 14 NADPH e 7 ATP (consumidos na formação de 7 malonil-CoA a partir de 7 malonil-CoA). Os NADPH têm duas origens: provêem da reação catalisada pela enzima málica e das reações da via das pentoses-fosfato catalisadas por desidrogenases. A importância relativa entre essas duas fontes de poder redutor depende do tecido considerado.
O palmitato pode sofrer alongamento e insaturações. Alguns ácidos graxos insaturados são essenciais para os mamíferos
O ácido palmítico pode ser utilizado como percursor para a formação de ácidos graxos mais longos ou insaturados. Os sistemas enzimáticos incubidos dessas modificações situam-se no retículo endoplasmático.
O alongamento processa-se por reações muito semelhantes às da síntese de ácidos graxos. Os ácidos graxos com uma dupla ligação na posição D são sintetizados por um complexo enzimático que requer NADH e O2 e inclui o citocromo b5, firmemente ligado ao retículo endoplasmático. Este sistema produz os ácidos graxos monoinsaturados mais comuns nos tecidos animais: palmitoleico e oleico. Nos mamíferos, não há possibilidade de introdução de duplas ligações entre carbonos mais distantes da carboxila do que o C9. Os ácidos linoleico (C18 D) e a-linolênico ( C18 D) são, por isso, essenciais para o homem, isto é, devem ser obtidos pela dieta. A dessaturação adicional do ácido linoleico origina o ácido g-linolênico (C18 D) nos animais e o ácido a-linolênico (C18 D) nas plantas.

O ácido g-linolênico sofre alongamento de dois carbonos que resulta em alterações da posição das insaturações e formação de um intermediário C20 D. A quarta insaturação é introduzida entre os carbonos 5 e 6, originando o ácido araquidônico ( C20 D). Estas vias de dessaturação de ácidos graxos não estão totalmente elucidadas, mas admite-se que o ácido linoleico seja o único ácido graxo essencial para o homem; as necessidades de ácido a-linolênico são, ainda, obscuras.

O ácido araquidônico é percursor das prostaglandinas. As prostaglandinas compõe uma família de substâncias produzidas pela maioria das células dos mamíferos e que, atuando em concentrações tão baixas quanto os hormônios, regulam processos fisiológicos muito diversificados, como agregação de plaquetas, concentração de musculatura lisa, reação inflamatória etc.
Os percursores dos triacilgliceróis são glicerol 3-fosfato e acil-CoA
Os triacilgliceróis são sintetizados a partir de acil-CoA derivadas de ácidos graxos e glicerol 3-fosfato. O glicerol 3-fosfato é formado por redução de diidroxiacetona fosfato: obtida a partir de glicose. No fígado, existe uma via alternativa para obtenção de glicerol 3-fosfato: a fosforilação do glicerol, catalisada pela glicerol quinase. O glicerol 3-fosfato é acilado em duas etapas, formando fosfatidato, intermediário também da síntese de fosfolipídios. O triaglicerol é obtido por hidrólise do grupo fosfato do fosfatidato, seguida por nova acilação.







 

CONTROLE DA ATIVIDADE DIGESTIVA

A presença de alimento na boca, a simples visão, pensamento ou o cheiro do alimento, estimulam a produção de saliva.
Enquanto o alimento ainda está na boca, o sistema nervoso, por meio do nervo vago, envia estímulos ao estômago, iniciando a liberação de suco gástrico. Quando o alimento chega ao estômago, este começa a secretar gastrina (1), hormônio produzido pela própria mucosa gástrica e que estimula a produção do suco gástrico. Aproximadamente 30% da produção do suco gástrico é mediada pelo sistema nervoso, enquanto os 70% restantes dependem do estímulo da gastrina.
Com a passagem do alimento para o duodeno, a mucosa duodenal secreta outro hormônio, a secretina (2), que estimula o pâncreas a produzir suco pancreático e liberar bicarbonato.
Ao mesmo tempo, a mucosa duodenal produz colecistocinina (ou CCK) (3), que é estimulada principalmente pela presença de gorduras no quimo e provoca a secreção do suco pancreático e contração da vesícula biliar (4), que lança a bile no duodeno.
Em resposta ainda ao quimo rico em gordura, o duodeno secreta enterogastrona (5), que inibe os movimentos de esvaziamento do estômago, a produção de gastrina e, indiretamente, de suco gástrico.


O METABOLISMO DO COLESTEROL

Síntese do colesterol
Nos seres humanos, o colesterol pode ser sintetizado a partir do acetil-CoA. O fígado, seguido do intestino, são os principais locais da síntese do colesterol, podendo produzi-lo em grandes quantidades. Pode também ser produzido nos testículos, ovários e córtex adrenal.


Transporte de colesterol
O colesterol proveniente da dieta, chega ao fígado a partir de quilomícrons remanescentes e daí provoca a inibição da síntese da enzima  da HMG-CoA redutase, diminuindo com isto a síntese endógena.
Antes de deixar os hepatócitos (células do fígado), o colesterol incorpora-se nas lipoproteínas VLDL (lipoproteína de densidade muito baixa). Estas, na corrente sanguínea, recebem  as apoproteínas  E e C2 das HDL (lipoproteína de alta densidade) e, ao passar pelos capilares dos tecidos periféricos, são transformadas em IDL (lipoproteína de densidade intermediária) e depois em LDL. Em indivíduos normais, aproximadamente metade das IDL retornam ao fígado, através dos receptores LDL, por endocitose (LDL e IDL contêm apoproteínas que se ligam especificamente aos receptores LDL – aproximadamente 1.500 receptores por célula), e os remanescentes IDL são convertidos em LDL.
Após ligação com LDL,  a região da membrana contendo o complexo receptor-lipoproteína, invagina-se, migra através do citoplasma celular  e funde-se lisossomos. A LDL é degradada nestas organelas e os ésteres de colesterol hidrolisados pela enzima colesterol-esterase lisossômica. O colesterol liberado é ressintetizado a éster dentro da célula e pode inibir a produção da redutase dentro de poucas horas, diminuindo com isto, a síntese do colesterol intracelular.



Regulação da síntese do colesterol
a- Inibição por “feed-back”: o colesterol proveniente da dieta inibe a síntese de colesterol no fígado, mas não no intestino, através da inibição da síntese da HMGCoA redutase.
b- Ritmo circadiano: a síntese de colesterol atinge o pico 6 horas após ter escurecido e o mínimo aproximadamente 6 horas após a reexposição à luz. A atividade é regulada ao nível da enzima HMGCoA redutase.
c- Regulação hormonal: insulina aumenta a atividade de HMGCoA redutase enquanto glucagon e cortisol inibem a atividade da enzima.

O COLESTEROL NO SANGUE

1- O colesterol forma um complexo com os lipídeos e proteínas, chamado lipoproteína. A forma que realmente apresenta malefício, quando em excesso, é a LDL.





2- Nesta interação, a LDL pode acabar sendo oxidada por radicais livres presentes na célula.
3- Esta oxidação aciona o mecanismo de defesa, desencadeando um processo inflamatório com infiltração de leucócitos. Moléculas inflamatórias acabam por promover a formação de uma capa de coágulos sobre o núcleo lipídico.


4- Após algum tempo cria-se uma placa (ateroma) no vaso sanguíneo; sobre esta placa, pode ocorrer uma lenta deposição de cálcio, numa tentativa de isolar a área afetada.
5- Isto pode interromper o fluxo sanguíneo normal (aterosclerose) e vir a provocar inúmeras doenças cardíacas. De fato, a concentração elevada de LDL no sangue é a principal causa de cardiopatias.






 

LIPOPROTEÍNAS

As lipoproteínas são classificadas em várias classes, de acordo com a natureza e quantidade de lipídeos e proteínas que as constituem. Dentre as classes de lipoproteínas destacam-se:
  • Quilomicrons: grandes partículas que transportam as gorduras alimentares e o colesterol para os músculos e outros tecidos.
  • Very-Low Density Lipoproteins (VLDL) e Intermediate Density Lipoprotein (IDL): transportam triglicerídeos (TAG) e colesterol endógenos do fígado para os tecidos. A medida em que perdem triglicerídeos, podem coletar mais colesterol e tornarem-se LDL.
  • Low-Density Lipoproteins (LDL): transportam do fígado para os tecidos, cerca de 70% de todo o colesterol que circula no sangue. São pequenas e densas o suficiente para se ligarem às membranas do endotélio (revestimento interno dos vasos sangüíneos. Por esta razão, as LDL são as lipoproteínas responsáveis pela aterosclerose (ver O colesterol no sangue) – deposição de placas lipídicas (ateromas) nas paredes das artérias. Conseqüentemente, níveis elevados de LDL estão associados com os altos índices de doenças cardiovasculares.
  • High-Density Lipoproteins (HDL): é responsável pelo transporte reverso do colesterol ou seja, transporta o colesterol endógeno de volta para o fígado. O nível elevado de HDL está associado com baixos índices de doenças cardiovasculares. 


Classes das enzimas


            As enzimas podem ser classificadas de acordo com vários critérios. O mais importante foi estabelecido pela União Internacional de Bioquímica (IUB), e estabelece 6 classes:
            - Oxidorredutases: São enzimas que catalisam reações de transferência de elétrons, ou seja: reações de oxi-redução. São as Desidrogenases e as Oxidases.
            Se uma molécula se reduz, tem que haver outra que se oxide.
            - Transferases : Enzimas que catalisam reações de transferência de grupamentos funcionais como grupos amina, fosfato, acil, carboxil, etc. Como exemplo temos as Quinases e as Transaminases.
            - Hidrolases : Catalisam reações de hidrólise de ligação covalente. Ex: As peptidades.
            - Liases: Catalisam a quebra de ligações covalentes e a remoção de moléculas de água, amônia e gás carbônico. As Dehidratases e as Descarboxilases são bons exemplos.
            - Isomerases: Catalisam reações de interconversão entre isômeros ópticos ou geométricos. As Epimerases são exemplos.


            - Ligases: Catalisam reações de formação e novas moléculas a partir da ligação entre duas já existentes, sempre às custas de energia (ATP). São as Sintetases.

Estruturas das Proteínas

As proteínas diferem entre si pelo número, tipo e seqüência dos aminoácidos em suas estruturas.
A seqüência linear de aminoácidos de uma proteína define sua estrutura primária.
Estrutura Primária Proteína
O número de aminoácidos é muito variável de uma proteína para outra:
• Insulina bovina: 51 aminoácidos
• Hemoglobina humana: 574 aminoácidos
• Desidrogenase glutâmica: 8 300 aminoácidos
O filamento de aminoácidos se enrola ao redor de um eixo, formando uma escada helicoidal chamada alfa-hélice. É uma estrutura estável, cujas voltas são mantidas por pontes de hidrogênio. Tal estrutura helicoidal é a estrutura secundária da proteína
As proteínas estabelecem outros tipos de ligações entre suas partes. Com isto, dobram sobre si mesmas, adquirindo uma configuração espacial tridimensional chamada estrutura terciária. Essa configuração pode ser filamentar como no colágeno, ou globular, como nas enzimas.  
Tanto o estabelecimento de pontes de hidrogênio como o de outros tipos de ligações dependem da seqüência de aminoácidos que compõem a proteína. Uma alteração na seqüência de aminoácidos (estrutura primária) implica em alterações nas estruturas secundária e terciária da proteína. Como a função de uma proteína se relaciona com sua forma espacial, também será alterada. Um exemplo clássico é a anemia falciforme. Nessa doença hereditária, há uma troca na cadeia de aminoácidos da hemoglobina (substituição de um ácido glutâmico por uma valina). Isto acaba por determinar mudanças na hemácia, célula que contém a hemoglobina, que assume o formato de foice quando submetida a baixas concentrações de oxigênio.
Hemacia falciforme

Muitas proteínas são formadas pela associação de dois ou mais polipeptídeos (cadeias de aminoácidos). A maneira como estas cadeias se associam constitui a estrutura quaternária dessas proteínas. A hemoglobina, citada anteriormente, é formada pela união de duas cadeias "alfa" e duas cadeias "beta".
Embora o termo ponte de hidrogênio não seja adequado, ele é comumente empregado na bioquímica de proteínas. Quimicamente, este tipo de interação deveria ser chamado de ligação de hidrogênio, ao invés de ponte de hidrogênio.

Desnaturação das Proteínas
Quando as proteínas são submetidas à elevação de temperatura, a variações de pH ou a certos solutos como a uréia, sofrem alterações na sua configuração espacial, e sua atividade biológica é perdida. Este processo se chama desnaturação. Ao romper as ligações originais, a proteína sofre novas dobras ao acaso. Geralmente, as proteínas se tornam insolúveis quando se desnaturam. É o que ocorre com a albumina da clara do ovo que, ao ser cozida, se torna sólida.
Proteína desnaturada 
Na desnaturação, a seqüência de aminoácidos não se altera e nenhuma ligação peptídica é rompida. Isto demonstra que a atividade biológica de uma proteína não depende apenas da sua estrutura primária, embora esta seja o determinante da sua configuração espacial. 
Algumas proteínas desnaturadas, ao serem devolvidas ao seu meio original, podem recobrar sua configuração espacial natural. Todavia, na maioria dos casos, nos processos de desnaturação por altas temperaturas ou por variações extremas de pH, as modificações são irreversíveis. A clara do ovo se solidifica, ao ser cozida, mas não se liquefaz quando esfria.
Enzimas cardíacas
Os marcadores de necrose miocárdica têm dupla função na avaliação do IAM, têm efeito diagnóstico e também na avaliação prognóstica. Em decorrência da isquemia prolongada a membrana celular perde sua integridade permitindo a saída para o meio extracelular de macromoléculas, possibilitando a dosagem sérica das mesmas. Dentre as mais importantes podemos citar:
  • Creatinofosfoquinase (CK) e Fração MB da Creatinofosfoquinase (CK-MB). A CK-MB é mais específica para diagnóstico de necrose miocárdica, sendo sua curva característica, obtida pela dosagem seriada, padrão para diagnóstico de IAM.
  • Troponinas T e I - não são detectadas em indivíduos normais, sendo que sua elevação, mesmo mínima, pode significar algum grau de lesão miocárdica (microinfartos). Uma dosagem negativa de troponina não afasta diagnóstico de IAM, devendo-se repetir essa avaliação após 10 a 12 horas do inicio dos sintomas.Pode se manter elevado até por 2 semanas do IAM.
  • Mioglobina – seu principal papel no diagnóstico de IAM decorre de seu valor preditivo negativo (variando de 83% a 98%), ou seja, é um bom método complementar para se afastar a presença de infarto do miocárdio quando negativo - sua curva é feita apenas nas primeiras horas de dor torácica.
Na prática clínica são utilizados as troponinas e a CK-MB nas 12 primeiras horas para diagnóstico e avaliação de pacientes com suspeita de síndromes coronariana agudas e o acompanhamento da curva de CK-MB nos paciente com diagnóstico de infarto.

Alimentos e nutrientes

A matéria orgânica que constitui o alimento de um animal deve conter diversos tipos de substâncias nutrientes: carboidratos, lipídios, proteínas, sais minerais, vitaminas e água:
  • Carboidratos e lipídios - São nutrientes orgânicos cuja função principal é fornecer energia às células. Alimentos ricos nestes nutrientes costumam ser chamados de alimentos energéticos. Os carboidratos (ou Glicídios) estão presentes nas massas e açúcares e tem a função de produzir e armazenar energia. Já os lipídios são os óleos e as gorduras, tem a função de armazenar energia (reserva alimentar), manter a temperatura e dissolver algumas vitaminas.
  • Proteínas - São nutrientes orgânicos cuja função principal é fornecer aminoácidos às células. A maior parte dos aminoácidos absorvidos é empregada na fabricação das proteínas específicas do animal. Uma vez que as proteínas são os principais constituintes estruturais das células animais, costuma-se dizer que alimentos ricos nesse tipo de nutriente são alimentos plásticos. As proteínas são construtoras de tecidos (ex.: unha, pele, músculos...) e catalisa reações bioquímicas (enzimas). Os aminoácidos estão contidos nas carnes e derivados do leite.
  • Sais Minerais - São nutrientes inorgânicos que fornecem ao homem elementos químicos como o cálcio, o fósforo, o ferro ou o enxofre, entre outros. O cálcio por exemplo é um elemento químico de fundamental importância na estrutura dos ossos. O ferro, presente na hemoglobina do sangue de diversos animais, é fundamental para o transporte de oxigênio para as células. O fósforo faz parte da molécula de ATP, responsável pelo fornecimento de energia a todas as reações químicas fundamentais à vida.
  • Água - Não é propriamente um nutriente, embora seja fundamental à vida. Todas as reações vitais ocorrem no meio aquoso presente no interior das células. Geralmente, a água faz parte da composição de todos os alimentos.
  • Vitaminas - Substâncias orgânicas essenciais à vida, obtidas no alimento ingerido. A maioria das vitaminas atua como co-fatores enzimáticos, isto é, como fatores assessórios de reações catalisadas por enzimas. Na ausência de certas vitaminas, determinadas enzimas não funcionam, com prejuízo para as células. As doenças resultantes da falta de vitaminas são denominadas avitaminoses. Até hoje foram identificadas treze vitaminas que o homem necessita ingerir na dieta. O termo "vitamina" significa "amina vital".

Escorbuto e Beribéri

O escorbuto e o beribéri são exemplos de doenças causadas pela falta de vitaminas, substâncias que constituem uma classe especial de nutrientes essenciais.
O escorbuto pode ser prevenido pela ingestão regular de frutas cítricas, como o limão ou a laranja. Sem o ácido ascórbico (substância conhecida como vitamina C), encontrada nessas frutas, a pessoa se torna enfraquecida, sofre de fortes hemorragias nasais e suas gengivas se inflamam; alguns podem até morrer.
O beribéri enfraquece os músculos, às vezes com total paralisia do corpo. Pode ser prevenido com uma dieta com tiamina, uma das vitaminas do complexo B, à base de vegetais, carne e arroz integral.

Necessidades energéticas

Um homem tem que despender energia constantemente para manter suas atividades vitais. A energia que supre as necessidades metabólicas é obtida através da respiração celular, processo composto por várias etapas bioquímicas, no qual moléculas orgânicas são oxidadas.
A energia contida nos alimentos é geralmente medida em calorias (cal) ou em quilocalorias (kcal).

Taxas metabólicas

A quantidade de energia que um homem em repouso gasta para manter suas atividades vitais constitui sua taxa metabólica basal. Já a taxa metabólica total corresponde a quantidade de energia necessária à realização de todas as atividades de um organismo.
A taxa metabólica basal de um homem jovem é cerca de 1600 kcal por dia. Já sua taxa metabólica total pode se situar em torno de 2000 kcal por dia, ou 6000 kcal por dia se ele for um atleta ou um trabalhador braçal.
Se ingerir quantidades insuficientes de nutrientes, ele ficará subnutrido. Com a perda de proteínas, os músculos se atrofiam. Mesmo proteínas de órgãos vitais, como o coração e o cérebro, passam a ser consumidas. As lesões físicas e mentais provocadas pela subnutrição podem ser irreversíveis, mesmo que se retorne à alimentação normal.
Nutrição, Obesidade.

Dietas protetora e balanceada

Os cientistas calcularam que, além dos nutrientes fundamentais, é necessário um mínimo de 1300 kcal para que uma pessoa adulta sobreviva sem desnutrição. Essa dieta mínima foi denominada dieta protetora. Um exemplo da composição de alimentos da dieta protetora, para um período de 24 horas, seria:
  • 1/2 litro de leite;
  • 20 gramas de trigo;
  • 90 gramas de carneInternet;
  • um ovo;
  • três frutas;
  • 5 gramas de manteiga;
  • 200 gramas de verduras;
  • 200 gramas de legumes;
  • 90 gramas de pão integral;
À dieta protetora, devem ser acrescentados alimentos até que se atinja a dieta balanceada, que forme cerca de 3000 kcal em 24 horas. Uma dieta balanceada deve conter a seguinte combinação de nutrientes:
  • 50% a 60% de carboidratos,
  • 25% a 35% de gorduras
  • e cerca de 15% de proteínas.
A combinação de diferentes tipos de alimentos em uma dieta balanceada fornece, além das calorias necessárias ao bom funcionamento do corpo, todos os nutrientes essenciais, como vitaminas e aminoácidos.
A deficiência protéica na infância também pode ocorrer devido à suspensão precoce da amamentação natural, substituída por leite em pó. A amamentação no peito materno, além de fornecer uma dieta balanceada à criança, evita infecções intestinais e transfere imunidade a diversas doenças infecciosas.

proceso completo

proteinas e Doenças relacionadas

Proteínas e doenças cardiovasculares

Pensava-se que as dietas ricas em proteínas eram prejudiciais para o coração, mas os estudos mais recentes mostraram que ingerir grandes quantidades de proteínas não causa qualquer problema cardíaco, pelo contrário.
É possível que comer maiores quantidades de proteínas, especialmente se forem de origem vegetal, ao mesmo tempo que cortamos nos carboidratos pode ser benéfico para o coração.

Proteínas e diabetes

As proteínas resultantes do leite de vaca também eram acusadas de desenvolver diabetes de tipo 1 (dependentes de insulina), mas os últimos estudos demonstram resultados inconclusivos e inconsistentes.
A quantidade de proteínas na dieta não afecta negativamente o desenvolvimento da diabetes de tipo 2, mas aqui os estudos continuam a avançar lentamente.

Proteínas e cancro

Também não existe nenhuma evidência de que ingerir muita ou pouca proteína tenha efeitos no risco de cancro. Apesar disso, comer carne vermelha (com muitas quantidades de proteínas) está ligado ao aumento do risco de cancro no cólon.

Proteínas e osteoporose

A digestão das proteínas liberta ácidos que são neutralizados pelo corpo através do cálcio e de outros agentes presentes no sangue. Comer muita proteína consome muito cálcio e algum dele pode vir dos ossos. Por isso, consumir muita quantidade de proteínas por largos períodos de tempo, pode enfraquecer os ossos. Apesar disso, os estudos também não são completamente conclusivos.
Alguns estudos sugerem que o aumento de proteínas aumenta o risco de fracturas ósseas, enquanto outras associam as dietas ricas em proteínas com o aumento da densidade de minerais nos ossos.
Como se vê, as proteínas estão ainda a ser estudadas pela comunidade científica e ainda não existem respostas definitivas sobre muitos dos efeitos provocados pela ingestão excessiva de proteína.